Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.17.520865

ABSTRACT

The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Community-driven and highly interdisciplinary, the project is collaborative and supports community standards, open access, and the FAIR data principles. The coordination of community work allowed for an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework links key molecules highlighted from broad omics data analysis and computational modeling to dysregulated pathways in a cell-, tissue- or patient-specific manner. We also employ text mining and AI-assisted analysis to identify potential drugs and drug targets and use topological analysis to reveal interesting structural features of the map. The proposed framework is versatile and expandable, offering a significant upgrade in the arsenal used to understand virus-host interactions and other complex pathologies.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.29.21256002

ABSTRACT

SARS-CoV-2 infection induces virus-reactive memory B cells expressing unmutated antibodies, which hints at their emergence from naive B cells. Yet, the dynamics of virus-specific naive B cells and their impact on immunity and immunopathology remain unclear. Here, we longitudinally studied moderate to severe COVID-19 patients to dissect SARS-CoV-2-specific B cell responses overtime. We found a broad virus-specific antibody response during acute infection, which evolved into an IgG1-dominated response during convalescence. Acute infection was associated with increased mature B cell progenitors in the circulation and the unexpected expansion of virus-targeting naive-like B cells that further augmented during convalescence together with virus-specific memory B cells. In addition to a transitory increase in tissue-homing CXCR3+ plasmablasts and extrafollicular memory B cells, most COVID-19 patients showed persistent activation of CD4+ and CD8+ T cells along with transient or long-lasting changes of key innate immune cells. Remarkably, virus-specific antibodies and the frequency of naive B cells were among the major variables defining distinct immune signatures associated with disease severity and inflammation. Aside from providing new insights into the complexity of the immune response to SARS-CoV-2, our findings indicate that the de novo recruitment of mature B cell precursors into the periphery may be central to the induction of antiviral immunity.


Subject(s)
Acute Disease , COVID-19 , Inflammation
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.18.20248461

ABSTRACT

Summary The production of SARS-CoV-2-specific neutralizing antibodies is widely considered as a key mechanism for COVID-19 resolution and protection. However, beyond their protective function, antibodies to SARS-CoV-2 may also participate in disease pathogenesis. To explore the potential relationship between virus-specific humoral responses and COVID-19 immunopathology, we measured serum antibody classes and subclasses to the receptor-binding domain of the SARS-CoV-2 spike protein and the nucleoprotein in a cohort of hospitalized COVID-19 patients with moderate to severe disease. We found that RBD-specific IgG1 and IgG3 dominated the humoral response to SARS-CoV-2, were more abundant in severe patients, and positively correlated with several clinical parameters of inflammation. In contrast, a virus-specific IgA2 response skewed toward RBD rather than NP associated with a more favorable clinical course. Interestingly, RBD-dominant IgA2 responses were mostly detected in patients with gastrointestinal symptoms, suggesting the possible involvement of intrinsically tolerogenic gut immune pathways in the attenuation of virus-induced inflammation and disease resolution.


Subject(s)
COVID-19 , Gastrointestinal Diseases
SELECTION OF CITATIONS
SEARCH DETAIL